## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 1,4-Bis(carboxymethyl)piperazine-1,4diium bis(dihydrogen phosphate) dihydrate

## Lin Cheng,* Li-Min Zhang and Jian-Quan Wang

Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
Correspondence e-mail: cep02chl@yahoo.com.cn
Received 2 September 2010; accepted 10 September 2010
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; $R$ factor $=0.035 ; w R$ factor $=0.098$; data-to-parameter ratio $=13.8$.

In the title salt, $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{2+} \cdot 2 \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the piperazine ring is located around an inversion center and adopts a chair conformation. The dihydrogen phosphate anions and free water molecules are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into two-dimensional hydrogen-bonding layers, which are further connected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the protonated piperazine into a three-dimensional supramolecular network.

## Related literature

For related structures, see: Yang et al. (2008). For potential applications of optical, electrical, magnetic and microporous materials, see: Evans \& Lin (2002); Zhang \& Chen (2006).


## Experimental

## Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{2+} \cdot 2 \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O} & b=8.992(3) \AA \\
M_{r}=434.23 & c=12.991(4) \AA \\
\text { Monoclinic, } P 2_{1} / c & \beta=123.310(17)^{\circ} \\
a=8.716(3) \AA & V=850.9(5) \AA^{3}
\end{array}
$$

## $Z=2$

Mo $K \alpha$ radiation
$\mu=0.33 \mathrm{~mm}^{-1}$
Data collection
Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\min }=0.840, T_{\max }=0.875$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035 \quad 121$ parameters
$w R\left(F^{2}\right)=0.098 \quad \mathrm{H}$-atom parameters constrained
$S=1.09$
1668 reflections
$T=120 \mathrm{~K}$
$0.54 \times 0.44 \times 0.41 \mathrm{~mm}$
$\Delta \rho_{\text {max }}=0.49 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.54 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA \AA^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 3$ | 0.84 | 1.69 | 2.5324 (18) | 177 |
| $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 5^{\mathrm{i}}$ | 0.93 | 1.74 | 2.658 (2) | 170 |
| O4-H4 . O 1 W | 0.84 | 1.74 | 2.5729 (19) | 172 |
| O6-H6 $\cdots{ }^{\text {O }}{ }^{\text {ii }}$ | 0.84 | 1.74 | 2.5700 (17) | 169 |
| $\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 6^{\text {iii }}$ | 0.85 | 2.08 | 2.868 (2) | 155 |
| $\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O}^{\text {iv }}$ | 0.85 | 2.02 | 2.8633 (19) | 169 |

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2598).

## References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Evans, O. R. \& Lin, W. B. (2002). Acc. Chem. Res. 35, 511-522.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yang, J., Lu, N., Zhang, G., Cheng, L. \& Gou, S. H. (2008). Polyhedron, 27, 2119-2126.
Zhang, J. P. \& Chen, X. M. (2006). Chem. Commun. pp. 1689-1699.

## supplementary materials

Acta Cryst. (2010). E66, o2566 [ doi:10.1107/S1600536810036342]

## 1,4-Bis(carboxymethyl)piperazine-1,4-diium bis(dihydrogen phosphate) dihydrate

L. Cheng, L.-M. Zhang and J.-Q. Wang

## Comment

Recent years have witnessed an explosion of great interest in hybrid organic-inorganic framework solids not only for their intriguing architectures and topologies, but also for their potential applications in optical, electrical, magnetic, and microporous materials (Evans et al. 2002; Zhang et al. 2006). We have synthesized two series of hybrid organic-inorganic frameworks with 1,4-piperazinediacetic acid and lanthanide sulfates (Yang et al. 2008). Our aim is to obtain similar hybrid solids by using phosphates instead of sulfates. However, we fail to synthesize the aimed compounds and obtain a three-dimensional supramolecular network, $\mathrm{C}_{8} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{P}_{2}\left(1.2 \mathrm{H}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$.

The title compound, is a dihydrogen phosphate, in which $\mathbf{1}$ is a protonated piperazine derivative and the piperazine ring located around inversion center adopts chair conformation (Fig. 1). The asymmetric unit of the title compound, contains half a protonated 1,4-piperazinediacetic acid, a dihydrogen phosphate and a free water molecule. In the carboxylates of protonated 1,4-piperazinediacetic acid, the distance of the $\mathrm{C}=\mathrm{O}$ bonds is 1.209 (2) $\AA$, which is shorter than those of $\mathrm{C}-\mathrm{O}$ bond (1.311 (2) $\AA$ ) and considered to have full double-bond character.

In the compound, the dihydrogen phosphates and free water molecules are linked to each other, via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a two-dimensional hydrogen bonding layers (Table 1, Fig. 2), which are further connected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the protonated 1,4-piperazinediacetic acid into a three-dimensional supramolecular network.

## Experimental

A mixture of $\mathrm{H}_{2}$ pda. $2 \mathrm{H}_{2} \mathrm{O}(0.024 \mathrm{~g}, 0.1 \mathrm{mmol}), \mathrm{Nd}_{2} \mathrm{O}_{3}(0.034 \mathrm{~g}, 0.1 \mathrm{mmol}), \mathrm{H}_{3} \mathrm{PO}_{4}(0.1 \mathrm{ml})$, and water $(6 \mathrm{ml})$ were heated ina 15 ml Teflon-lined vessel at $160^{\circ}$ for 3 days, followed by slow cooling $\left(5^{\circ} \mathrm{h}^{-1}\right)$ to room temperature. After filtration, colorless block crystals were collected and dried in air ( 0.025 g , yield ca $57 \%$ based on $\mathrm{H}_{2}$ pda) .

## Refinement

All H atoms attached to $\mathrm{C}, \mathrm{N}$ and O (hydroxyl) atoms were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.99$ $\AA$ (methylene), $\mathrm{N}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.84 \AA$ with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}$ or N$)$ or $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}(\mathrm{O}) . \mathrm{H}$ atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints $(\mathrm{O}-\mathrm{H}=$ $0.85(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.40(2) \AA)$ with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}(\mathrm{O})$. In the last cycle of refinement, they were treated as riding on their parent O atom.

## supplementary materials

Figures


Fig. 1. Molecular view of compound (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.


Fig. 2. Partial packing view of compound ( I ), showing the two-dimensional network formed by the hydrogen bonds showed as dashed lines, involving the dihydrogen phosphate and the water molecules. [Symmetry codes:(iv) $-x+2,-y+1,-z+2$; (v) $-x+2, y+1 / 2,-z+3 / 2$ ]

## 1,4-Bis(carboxymethyl)piperazine-1,4-diium bis(dihydrogen phosphate) dihydrate

## Crystal data

$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{2+} \cdot 2 \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$$
F(000)=456
$$

$M_{r}=434.23$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=8.716$ (3) $\AA$
$b=8.992(3) \AA$
$c=12.991$ (4) $\AA$
$\beta=123.310(17)^{\circ}$
$V=850.9(5) \AA^{3}$
$Z=2$
$D_{\mathrm{x}}=1.695 \mathrm{Mg} \mathrm{m}^{-3}$
$\theta=2.4-28.0^{\circ}$
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, colourless
$0.54 \times 0.44 \times 0.41 \mathrm{~mm}$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 782 reflections

## Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
$\varphi$ and $\omega$ scan
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.840, T_{\text {max }}=0.875$
3998 measured reflections

1668 independent reflections
1552 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-10 \rightarrow 8$
$k=-11 \rightarrow 10$
$l=-10 \rightarrow 16$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.098$
$S=1.09$

1668 reflections
121 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0583 P)^{2}+0.4175 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.49 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.54 \mathrm{e} \AA^{-3}$

## Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 | $0.69897(17)$ | $0.37509(13)$ | $0.33962(11)$ | $0.0187(3)$ |
| O2 | $0.64019(19)$ | $0.56082(13)$ | $0.42897(12)$ | $0.0213(3)$ |
| H2 | 0.6898 | 0.5039 | 0.4903 | $0.032^{*}$ |
| N1 | $0.57511(19)$ | $0.53648(15)$ | $0.12844(13)$ | $0.0131(3)$ |
| H1 | 0.6924 | 0.4981 | 0.1622 | $0.016^{*}$ |
| C1 | $0.6431(2)$ | $0.49837(19)$ | $0.33891(15)$ | $0.0156(4)$ |
| C2 | $0.5654(2)$ | $0.60289(19)$ | $0.22984(15)$ | $0.0158(3)$ |
| H2A | 0.4360 | 0.6257 | 0.1991 | $0.019^{*}$ |
| H2B | 0.6353 | 0.6973 | 0.2566 | $0.019^{*}$ |
| C3 | $0.5428(2)$ | $0.65335(18)$ | $0.03654(15)$ | $0.0159(3)$ |
| H3A | 0.6332 | 0.7346 | 0.0785 | $0.019^{*}$ |
| H3B | 0.4184 | 0.6958 | -0.0006 | $0.019^{*}$ |
| C4 | $0.4392(2)$ | $0.41261(19)$ | $0.06352(16)$ | $0.0163(4)$ |
| H4A | 0.3131 | 0.4513 | 0.0268 | $0.020^{*}$ |
| H4B | 0.4608 | 0.3343 | 0.1237 | $0.020^{*}$ |
| P1 | $0.92100(6)$ | $0.43880(4)$ | $0.74544(4)$ | $0.01286(17)$ |
| O3 | $0.79926(16)$ | $0.38920(13)$ | $0.61380(11)$ | $0.0174(3)$ |
| O4 | $0.80098(16)$ | $0.51844(14)$ | $0.78556(12)$ | $0.0200(3)$ |


| H4 | 0.8650 | 0.5820 | 0.8400 | $0.030^{*}$ |
| :--- | :--- | :--- | :--- | :--- |
| O5 | $1.07757(15)$ | $0.54245(12)$ | $0.77465(11)$ | $0.0160(3)$ |
| O6 | $1.00826(16)$ | $0.29822(13)$ | $0.83100(11)$ | $0.0172(3)$ |
| H6 | 0.9690 | 0.2207 | 0.7879 | $0.026^{*}$ |
| O1W | $0.9695(2)$ | $0.73039(16)$ | $0.94132(13)$ | $0.0289(3)$ |
| H1WA | 1.0120 | 0.7221 | 1.0176 | $0.043^{*}$ |
| H1WB | 1.0505 | 0.7740 | 0.9349 | $0.043^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O1 | $0.0218(6)$ | $0.0160(6)$ | $0.0182(6)$ | $0.0027(5)$ | $0.0109(5)$ | $0.0009(5)$ |
| O2 | $0.0306(8)$ | $0.0185(6)$ | $0.0159(6)$ | $0.0063(5)$ | $0.0134(6)$ | $0.0025(5)$ |
| N1 | $0.0134(7)$ | $0.0124(6)$ | $0.0139(7)$ | $-0.0002(5)$ | $0.0078(6)$ | $0.0002(5)$ |
| C1 | $0.0140(8)$ | $0.0159(8)$ | $0.0163(8)$ | $-0.0012(6)$ | $0.0080(7)$ | $-0.0011(6)$ |
| C2 | $0.0187(8)$ | $0.0139(8)$ | $0.0160(8)$ | $0.0018(6)$ | $0.0103(7)$ | $-0.0006(6)$ |
| C3 | $0.0197(8)$ | $0.0118(7)$ | $0.0162(8)$ | $-0.0006(6)$ | $0.0098(7)$ | $0.0013(6)$ |
| C4 | $0.0170(8)$ | $0.0159(8)$ | $0.0150(8)$ | $-0.0041(6)$ | $0.0082(7)$ | $-0.0003(6)$ |
| P1 | $0.0137(3)$ | $0.0112(3)$ | $0.0146(3)$ | $-0.00065(14)$ | $0.0084(2)$ | $-0.00046(14)$ |
| O3 | $0.0194(6)$ | $0.0157(6)$ | $0.0149(6)$ | $-0.0001(5)$ | $0.0081(5)$ | $-0.0004(5)$ |
| O4 | $0.0180(6)$ | $0.0201(6)$ | $0.0253(7)$ | $-0.0030(5)$ | $0.0142(6)$ | $-0.0076(5)$ |
| O5 | $0.0141(6)$ | $0.0120(6)$ | $0.0230(7)$ | $0.0003(4)$ | $0.0109(5)$ | $0.0017(5)$ |
| O6 | $0.0226(6)$ | $0.0115(6)$ | $0.0154(6)$ | $-0.0025(5)$ | $0.0092(5)$ | $-0.0014(4)$ |
| O1W | $0.0355(8)$ | $0.0347(8)$ | $0.0219(7)$ | $-0.0153(6)$ | $0.0192(6)$ | $-0.0104(6)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{O} 1-\mathrm{C} 1$ | $1.209(2)$ |
| :--- | :--- |
| $\mathrm{O} 2-\mathrm{C} 1$ | $1.311(2)$ |
| $\mathrm{O} 2-\mathrm{H} 2$ | 0.8400 |
| $\mathrm{~N} 1-\mathrm{C} 2$ | $1.490(2)$ |
| $\mathrm{N} 1-\mathrm{C} 3$ | $1.497(2)$ |
| $\mathrm{N} 1-\mathrm{C} 4$ | $1.503(2)$ |
| $\mathrm{N} 1-\mathrm{H} 1$ | 0.9300 |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.515(2)$ |
| $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 0.9900 |
| $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 0.9900 |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.513(2)$ |
| $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 0.9900 |
| $\mathrm{C} 1-\mathrm{O} 2-\mathrm{H} 2$ | 109.5 |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$ | $110.29(12)$ |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$ | $112.53(13)$ |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$ | $109.14(13)$ |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$ | 108.3 |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$ | 108.3 |
| $\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1$ | 108.3 |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$ | $126.25(16)$ |


| C3-H3B | 0.9900 |
| :---: | :---: |
| $\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$ | 1.513 (2) |
| $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 0.9900 |
| C4-H4B | 0.9900 |
| P1-O3 | 1.5022 (13) |
| P1-O5 | 1.5186 (12) |
| P1-O4 | 1.5740 (12) |
| P1-O6 | 1.5759 (13) |
| O4-H4 | 0.8400 |
| O6-H6 | 0.8400 |
| O1W-H1WA | 0.8499 |
| O1W-H1WB | 0.8505 |
| N1-C3-H3B | 109.6 |
| $\mathrm{C} 4{ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 109.6 |
| H3A-C3-H3B | 108.1 |
| $\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$ | 110.54 (13) |
| N1-C4-H4A | 109.5 |
| C3 ${ }^{\text {i }}$ - $4-\mathrm{H} 4 \mathrm{~A}$ | 109.5 |
| N1-C4-H4B | 109.5 |
| C3i-C4-H4B | 109.5 |

## sup-4

| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | $123.19(15)$ | $\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$ | 108.1 |
| :--- | :--- | :--- | :--- |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ | $110.56(14)$ | $\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 5$ | $116.28(7)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$ | $111.40(13)$ | $\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$ | $109.25(7)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 109.3 | $\mathrm{O}-\mathrm{P} 1-\mathrm{O} 4$ | $107.91(7)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 109.3 | $\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 6$ | $109.29(7)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 109.3 | $\mathrm{O} 5-\mathrm{P} 1-\mathrm{O} 6$ | $107.26(7)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 109.3 | $\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 6$ | $106.41(7)$ |
| $\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 108.0 | $\mathrm{P} 1-\mathrm{O} 4-\mathrm{H} 4$ | 109.5 |
| $\mathrm{~N} 1-\mathrm{C} 3-\mathrm{C} 4$ | $\mathrm{P} 1-\mathrm{O} 6-\mathrm{H} 6$ | 109.5 |  |
| $\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | $110.32(14)$ | $\mathrm{H} 1 \mathrm{WA}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{WB}$ | 107.5 |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 109.6 |  |  |

Symmetry codes: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ( $\AA,^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | $D$ - H | $\mathrm{H} \cdots \mathrm{A}$ | ${ }^{\cdots} \cdots$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 3$ | 0.84 | 1.69 | 2.5324 (18) | 177. |
| $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 5^{\text {ii }}$ | 0.93 | 1.74 | 2.658 (2) | 170. |
| O4-H4 $\cdots$ O1W | 0.84 | 1.74 | 2.5729 (19) | 172. |
| $\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O} 5^{\text {iii }}$ | 0.84 | 1.74 | 2.5700 (17) | 169. |
| O1W—H1WA $\cdots$ O6 ${ }^{\text {iv }}$ | 0.85 | 2.08 | 2.868 (2) | 155. |
| O1W—H1WB $\cdots \mathrm{O}^{\text {v }}$ | 0.85 | 2.02 | 2.8633 (19) | 169. |

## supplementary materials

Fig. 1


Fig. 2


